微服务 API 网关架构
Architecture
微服务 API 网关架构图,展示请求路由、JWT 身份验证、速率限制、服务发现以及跨分布式后端服务的响应聚合。该模板模拟微服务生态系统中所有客户端流量的入口点,在请求到达内部服务之前执行安全策略。适合设计具有集中式横切关注点的可扩展 API 基础设施的平台工程师。
Architecture
无服务器数据管道架构图,展示 Kinesis 摄取、Lambda 转换函数、S3 数据湖存储区(原始和精选)、Glue 目录注册以及 Athena 查询引擎为 QuickSight 仪表板和 SageMaker ML 模型提供数据。该模板模拟从数据摄取到转换、编目和分析的完整无服务器 ETL 管道,无需管理任何基础设施。适合构建经济高效分析平台的数据团队。
Ingestion { # Data Ingestion
n1: rectangle label:"Kinesis Data Stream"
n2: rectangle label:"API Gateway Endpoint"
n3: rectangle label:"IoT Core MQTT"
n4: rectangle label:"Kinesis Firehose"
n1.handle(right) -> n4.handle(left) [label="Stream"]
n2.handle(right) -> n4.handle(left) [label="Batch"]
n3.handle(right) -> n4.handle(left) [label="Device Data"]
n4.handle(bottom) -> Transform.n5.handle(top) [label="Buffer + Deliver"]
}
Transform { # Serverless Transform
n5: rectangle label:"Lambda Transform Function"
n6: rectangle label:"Validate Schema"
n7: diamond label:"Valid Record?"
n8: rectangle label:"Enrich with Reference Data"
n9: rectangle label:"Route to Error Bucket"
n10: rectangle label:"Partition by Date"
n5.handle(right) -> n6.handle(left)
n6.handle(right) -> n7.handle(left)
n7.handle(right) -> n8.handle(left) [label="Valid"]
n7.handle(bottom) -> n9.handle(top) [label="Invalid"]
n8.handle(right) -> n10.handle(left) [label="Enriched"]
n10.handle(bottom) -> Storage.n11.handle(top) [label="Partitioned"]
}
Storage { # Data Lake Storage
n11: rectangle label:"S3 Raw Zone"
n12: rectangle label:"S3 Curated Zone"
n13: rectangle label:"Glue Catalog"
n14: rectangle label:"Athena Query Engine"
n11.handle(right) -> n12.handle(left) [label="Glue ETL Job"]
n12.handle(right) -> n13.handle(left) [label="Register Schema"]
n13.handle(right) -> n14.handle(left) [label="Queryable"]
}
Analytics { # Analytics Layer
n15: rectangle label:"QuickSight Dashboard"
n16: rectangle label:"SageMaker ML Model"
n17: rectangle label:"Redshift Data Warehouse"
n14.handle(bottom) -> Analytics.n15.handle(top) [label="Visualize"]
n14.handle(bottom) -> Analytics.n16.handle(top) [label="Train Model"]
n14.handle(bottom) -> Analytics.n17.handle(top) [label="COPY INTO"]
}
Traditional ETL pipelines require provisioning Spark clusters, managing job schedulers, and paying for always-on infrastructure. A serverless data pipeline uses managed services for every stage—ingestion, transformation, cataloging, and querying—eliminating infrastructure management while maintaining enterprise-grade data processing capabilities.
Self-managed Spark/Hadoop clusters offer more control but require significant DevOps investment. Snowflake or Databricks provide managed alternatives with different pricing models. This template shows the AWS-native serverless data pipeline.
| Template Name | 无服务器数据管道架构 |
| Category | Architecture |
| Steps | 6 workflow steps |
| Format | FlowZap Code (.fz file) |
Architecture
微服务 API 网关架构图,展示请求路由、JWT 身份验证、速率限制、服务发现以及跨分布式后端服务的响应聚合。该模板模拟微服务生态系统中所有客户端流量的入口点,在请求到达内部服务之前执行安全策略。适合设计具有集中式横切关注点的可扩展 API 基础设施的平台工程师。
Architecture
每服务独立数据库架构图,每个微服务拥有其专用数据存储,通过 Kafka 进行事件驱动同步以实现跨服务数据一致性。该模板展示了微服务数据隔离的核心原则,展示 PostgreSQL 和 MongoDB 如何在多语言持久化策略中共存。对于在保持最终一致性的同时强制服务自治的架构师至关重要。
Architecture
按业务能力组织的微服务分解架构图:身份认证、产品目录、定价和订单履行,每个都有独立的数据存储和 API。该模板展示如何将单体应用拆分为与业务领域对齐的服务,使用 Backend-for-Frontend (BFF) 模式进行客户端特定的聚合。适合规划领域驱动微服务边界的架构师。
Architecture
绞杀者模式迁移架构图,展示使用路由层在新旧系统之间分流流量,逐步用新微服务替换遗留单体应用。该模板模拟经过验证的迁移策略,新功能作为微服务构建,遗留端点逐步退役。对于在不进行高风险大爆炸重写的情况下现代化遗留系统的团队至关重要。