微服务每服务独立数据库架构
Architecture
每服务独立数据库架构图,每个微服务拥有其专用数据存储,通过 Kafka 进行事件驱动同步以实现跨服务数据一致性。该模板展示了微服务数据隔离的核心原则,展示 PostgreSQL 和 MongoDB 如何在多语言持久化策略中共存。对于在保持最终一致性的同时强制服务自治的架构师至关重要。
Architecture
实时事件流管道架构图,IoT 传感器、应用日志和用户点击流数据通过 Kafka 流入 Apache Flink 进行窗口聚合、异常检测以及向数据湖和仪表板的多目标输出。该模板可视化从摄取到转换、存储和告警的端到端流处理。对于构建实时分析和监控平台的数据工程师至关重要。
Sources { # Data Sources
n1: rectangle label:"IoT Sensor Stream"
n2: rectangle label:"Application Logs"
n3: rectangle label:"User Clickstream"
n4: rectangle label:"Transaction Events"
n1.handle(bottom) -> Ingestion.n5.handle(top) [label="MQTT"]
n2.handle(bottom) -> Ingestion.n5.handle(top) [label="Fluentd"]
n3.handle(bottom) -> Ingestion.n6.handle(top) [label="Kafka Connect"]
n4.handle(bottom) -> Ingestion.n6.handle(top) [label="CDC"]
}
Ingestion { # Stream Ingestion (Kafka)
n5: rectangle label:"Kafka Topic: Raw Events"
n6: rectangle label:"Kafka Topic: Enriched Events"
n7: rectangle label:"Schema Registry Validate"
n8: rectangle label:"Partition by Key"
n5.handle(right) -> n7.handle(left) [label="Validate"]
n7.handle(right) -> n8.handle(left) [label="Schema OK"]
n8.handle(bottom) -> Processing.n9.handle(top) [label="Partitioned"]
n6.handle(bottom) -> Processing.n9.handle(top) [label="Stream"]
}
Processing { # Stream Processing (Flink/Spark)
n9: rectangle label:"Window Aggregation"
n10: rectangle label:"Filter and Transform"
n11: rectangle label:"Join Streams"
n12: diamond label:"Anomaly Detected?"
n13: rectangle label:"Emit Alert Event"
n14: rectangle label:"Write to Sink"
n9.handle(right) -> n10.handle(left) [label="5-min Window"]
n10.handle(right) -> n11.handle(left) [label="Cleaned"]
n11.handle(right) -> n12.handle(left) [label="Enriched"]
n12.handle(right) -> n14.handle(left) [label="Normal"]
n12.handle(bottom) -> n13.handle(top) [label="Anomaly"]
n13.handle(right) -> n14.handle(left) [label="Alert + Data"]
n14.handle(bottom) -> Sinks.n15.handle(top) [label="Output"]
}
Sinks { # Data Sinks
n15: rectangle label:"Data Lake (S3/HDFS)"
n16: rectangle label:"Real-Time Dashboard"
n17: rectangle label:"Alert Notification"
n18: rectangle label:"Search Index (Elasticsearch)"
n15.handle(right) -> n16.handle(left) [label="Batch Analytics"]
n17.handle(right) -> n18.handle(left)
}
Batch processing introduces hours of latency between data generation and insight. Real-time event streaming pipelines process data as it arrives, enabling immediate anomaly detection, live dashboards, and sub-second alerting—critical for IoT monitoring, fraud detection, and operational intelligence.
Batch ETL with Spark is simpler but adds hours of latency. Managed streaming services like AWS Kinesis or Google Dataflow reduce operational complexity. This template visualizes the end-to-end streaming pipeline architecture.
| Template Name | 事件驱动流处理管道架构 |
| Category | Architecture |
| Steps | 6 workflow steps |
| Format | FlowZap Code (.fz file) |
Architecture
每服务独立数据库架构图,每个微服务拥有其专用数据存储,通过 Kafka 进行事件驱动同步以实现跨服务数据一致性。该模板展示了微服务数据隔离的核心原则,展示 PostgreSQL 和 MongoDB 如何在多语言持久化策略中共存。对于在保持最终一致性的同时强制服务自治的架构师至关重要。
Architecture
事件驱动发布-订阅架构图,展示 Kafka 或 RabbitMQ 消息代理、事件序列化、主题分区、向多个消费者的扇出交付以及死信队列错误处理。该模板模拟了生产者和消费者通过消息代理完全解耦的基础异步消息传递模式。对于构建松耦合、可扩展的事件驱动系统的架构师至关重要。
Architecture
微服务 API 网关架构图,展示请求路由、JWT 身份验证、速率限制、服务发现以及跨分布式后端服务的响应聚合。该模板模拟微服务生态系统中所有客户端流量的入口点,在请求到达内部服务之前执行安全策略。适合设计具有集中式横切关注点的可扩展 API 基础设施的平台工程师。
Architecture
按业务能力组织的微服务分解架构图:身份认证、产品目录、定价和订单履行,每个都有独立的数据存储和 API。该模板展示如何将单体应用拆分为与业务领域对齐的服务,使用 Backend-for-Frontend (BFF) 模式进行客户端特定的聚合。适合规划领域驱动微服务边界的架构师。
Architecture
绞杀者模式迁移架构图,展示使用路由层在新旧系统之间分流流量,逐步用新微服务替换遗留单体应用。该模板模拟经过验证的迁移策略,新功能作为微服务构建,遗留端点逐步退役。对于在不进行高风险大爆炸重写的情况下现代化遗留系统的团队至关重要。